
Iqra Mehmood IAD LAB 10

PROJECT PROPOSAL
This project is a data-driven ASP.NET Web Forms application designed to manage customer subscriptions,
billing, and payments for Software-as-a-Service (SaaS) products. It supports role-based functionalities for
administrators and multiple types of managers, ensuring secure and streamlined access to relevant modules.

KEY FEATURES

Data-Driven Functionality:
All modules, including customer registration, plan subscription, payments, and admin operations, interact
with a centralized SQL Server database (SAAS), ensuring persistent and structured data storage.

User Roles & Access Control:
The application defines roles such as:

• Administrator

• Customer Subscription Manager

• Customer Payment Manager

• Subscription Billing Manager

• Customer

Role-specific pages and functionalities are implemented using cookie-based state tracking and controlled
redirection.

State Management:
User sessions and login identity are maintained using cookies (e.g., Customer_Id, Admin_Id) to persist
authenticated state across pages.

Input Validation:
Both client-side (via ASP.NET validators) and server-side validation ensure input integrity (e.g., required
fields, correct formats for payment IDs, phone numbers, etc.).

Data Security:

• All SQL queries are parameterized queries to prevent SQL injection.

• Password fields are masked and validated.

• Unauthorized access to protected pages is restricted based on login status and user role.

Subscription & Payment Workflow:
Customers can subscribe to plans, make payments, and view history. Admins and managers can view and
edit records such as customers, subscriptions, payments, and login credentials.

SaaS SUBSCRIPTION PLATFORM

Iqra Mehmood IAD LAB 10

Extensibility:
The system is modular and scalable, allowing for future integration of email notifications, payment gateways,
or analytics dashboards.

CONCLUSION

This project successfully meets the criteria of a secure, validated, role-based, and state-managed data-driven
web application, aligning well with real-world SaaS business operations.

SOFTWARE REQUIREMENTS SPECIFICATIONS

FUNCTIONAL REQUIREMENTS

User Authentication

• The system allows customers and admins/managers to log in.

• Role is selected (for admin) and verified at login.

• Invalid login attempts are tracked; lockout is implemented after 3 failures for 2 minutes.

Customer Registration

• Customers can register with their details.

• System auto-generates a Customer_Id (e.g., C001, C002…).

• Credentials are stored in Login table.

Subscription Management

• Customers can view and subscribe to plans.

• System auto-generates a Subscription_Id.

• Discounts and total price are calculated based on duration.

Payment Management

• Customers can view unpaid subscriptions and make payments.

• System auto-generates a Payment_Id.

• Payments are stored and linked to the subscription.

Role-Based Admin Functionalities

• Administrator can view and edit Admin and Login tables.

• Customer Subscription Manager (CSM) can view/edit Customer and Subscription data.

• Customer Payment Manager (CPM) can view/edit Payment and Method tables.

• Subscription Billing Manager (SBM) can be extended to manage plan pricing and invoicing.

Iqra Mehmood IAD LAB 10

NON-FUNCTIONAL REQUIREMENTS

Usability

• Intuitive navigation and role-based redirection.

• Clear form labels, validation error messages, and instructions.

Security

• Parameterized queries prevent SQL injection.

• Cookies are used for session persistence.

• Passwords are validated and masked on input.

• Role-based page access control.

Maintainability

• Modular codebase with dedicated event handlers.

• Simple and structured ASP.NET page organization.

Compatibility

• Runs on ASP.NET Framework 4.0+.

• Hosted on Somee with SQL Server backend.

Scalability

• System can scale to more roles and modules.

COMPONENT MODEL

FRONTEND COMPONENTS

Component Description

User Interface (ASP.NET Web Forms)

- Home.aspx (Landing page)
- Login.aspx (Authentication)

- Dashboard.aspx (User dashboard)
- Admin.aspx (Admin panel)

CSS & Styling
- MasterPage.master (Consistent layout)

- styles.css (Responsive design)

DATABASE COMPONENTS

Component Description

SQL Server Database

- Login (User credentials)
- Customer (User profiles)

- Plans (Subscription packages)
- Subscription (User subscriptions)

- Payment (Transaction records)

Iqra Mehmood IAD LAB 10

BACKEND COMPONENTS

Component Description

Business Logic (VB.NET)

- Login authentication
- Role-based authorization

- Subscription management
- Payment processing

Data Access Layer - SQL queries (parameterized)

Session Management
- Cookie-based authentication

- Session timeout handling

DEPLOYMENT MODEL

Development: Microsoft Visual Studio (ASP .NET with VB .NET)

Server: IIS/somee’s online server

Database: Microsoft SQL Server

Client: Web Browser

Hosting: somee.com

UI Layer: Web Forms (.aspx pages)

Business Logic: VB .NET (code behind)

Data Access Layer: ADO .NET (CRUD operations)

SQL Server Database: (data storage)

Client’s PC/Browser Web Server (somee) Database (somee)
HTTPS

Iqra Mehmood IAD LAB 10

DATABASE MODEL

ENTERPRISE DATA MODEL

• A customer subscribes a subscription

• A subscription has a plan that is subscribed

• A plan has plan_lines

• Plan_lines contain software

• A subscription requires payment

• A payment is made by a method

ENTITIES AND ATTRIBUTES

Following are the attributes for each entity and their properties:

CUSTOMER

Attribute Purpose Nullable Key

Customer_Id Unique identifier for the customer No Primary Key

Email Customer's email address No Unique

Name Customer's full name No

Cell_NO Customer's mobile phone number No

Country Customer's country code (2 characters) Yes

City Customer's city Yes

Iqra Mehmood IAD LAB 10

METHOD
Attribute Purpose Nullable Key

Method_Id Unique identifier for the payment method No Primary Key

Method_Name Name of the payment method No Unique

PLAN

Attribute Purpose Nullable Key

Plan_Id Unique identifier for the subscription plan No Primary Key

Plan_Name Name of the subscription plan No Unique

Price_Per_Month Monthly cost for the plan No

SOFTWARE

Attribute Purpose Nullable Key

Software_Id Unique identifier for the software No Primary Key

Software_Name Name of the software No Unique

SUBSCRIPTION

Attribute Purpose Nullable Key

Subscription_Id Unique identifier for the subscription No Primary Key

Customer_Id Identifier for the customer subscribing No Foreign Key (Customer)

Plan_Id Identifier for the chosen subscription plan No Foreign Key (Plan)

Duration_Months Duration of the subscription in months No

Start_Date Date when the subscription starts No

Percent_Discount Discount percentage applied to the subscription Yes

Amount_ToBe_Paid Total amount to be paid after discount No

Paid_Status Status of the payment ("Yes" or "No") Yes

PAYMENT

Attribute Purpose Nullable Key

Payment_Id Unique identifier for the payment No Primary Key

Subscription_Id Identifier for the associated subscription No Foreign Key (Subscription)

Method_Id Identifier for the payment method No Foreign Key (Method)

Cell_NO Mobile number used for payment No

Amount Total payment amount No

Account_No Account number (optional) for payment Yes

Payment_Timestamp Date and time when the payment was made Yes

PLAN_LINE

Attribute Purpose Nullable Key

Software_Id Identifier for the software in the plan No Foreign Key (Software)

Plan_Id Identifier for the plan associated with the software No Foreign Key (Plan)

Software_Level Level of the software in the plan (e.g. Basic, Premium) No

Iqra Mehmood IAD LAB 10

ENTITY RELATIONSHIP MODEL

Iqra Mehmood IAD LAB 10

COMPOSITE USAGE MODEL
The Composite Usage Model relative to the queries applied on the database is as follows:
~Access Frequency (per minute)

Iqra Mehmood IAD LAB 10

RELATIONAL SCHEMA

Iqra Mehmood IAD LAB 10

NORMALIZED SCHEMA

• All the tables do not have any non-atomic value, so they are in 1 NF.

• All the tables do not have any partial functional dependency, so they are in 2 NF.

• All the tables do not have any transitive dependency, so they are in 3 NF.

DATABASE CREATION
-- Creating Relations
CREATE TABLE Customer (
 Customer_Id VARCHAR(10) NOT NULL,
 Email VARCHAR(30) NOT NULL,
 Name VARCHAR(30) NOT NULL,
 Cell_NO VARCHAR(11) NOT NULL,
 Country VARCHAR(2),
 City VARCHAR(20),
 CONSTRAINT Customer_PK PRIMARY KEY (Customer_Id),
 CONSTRAINT CellNo_Check CHECK (REGEXP_LIKE(Cell_NO, '^\d{11}$')),
 CONSTRAINT Email_Unique UNIQUE (Email),
 CONSTRAINT Customer_Id_Format CHECK (REGEXP_LIKE(Customer_Id, '^C\d{3,9}$'))
);

CREATE TABLE Method (
 Method_Id VARCHAR(10) NOT NULL,
 Method_Name VARCHAR(20) NOT NULL,
 CONSTRAINT Method_PK PRIMARY KEY (Method_Id),
 CONSTRAINT Method_Name_Unique UNIQUE (Method_Name),
 CONSTRAINT Method_Id_Format CHECK (REGEXP_LIKE(Method_Id, '^M\d{3,9}$'))
);

CREATE TABLE Plan (
 Plan_Id VARCHAR(10) NOT NULL,
 Plan_Name VARCHAR(30) NOT NULL,
 Price_per_month DECIMAL(6, 3) NOT NULL,
 CONSTRAINT Plan_PK PRIMARY KEY (Plan_Id),
 CONSTRAINT Plan_Name_Unique UNIQUE (Plan_Name),
 CONSTRAINT Plan_Id_Format CHECK (REGEXP_LIKE(Plan_Id, '^P\d{3,9}$'))
);

CREATE TABLE Software (
 Software_Id VARCHAR(10) NOT NULL,
 Software_Name VARCHAR(50) NOT NULL,
 CONSTRAINT Software_PK PRIMARY KEY (Software_Id),
 CONSTRAINT Software_Name_Unique UNIQUE (Software_Name),
 CONSTRAINT Software_Id_Format CHECK (REGEXP_LIKE(Software_Id, '^SW\d{3,8}$'))
);

CREATE TABLE Subscription (
 Subscription_Id VARCHAR(10) NOT NULL,
 Customer_Id VARCHAR(10) NOT NULL,

Iqra Mehmood IAD LAB 10

 Plan_Id VARCHAR(10) NOT NULL,
 Duration_Months NUMBER NOT NULL,
 Start_Date DATE NOT NULL,
 Percent_Discount DECIMAL(5,2),
 Amount_ToBe_Paid DECIMAL(10,2),
 Paid_Status VARCHAR(3) DEFAULT 'No',
 CONSTRAINT Subscription_PK PRIMARY KEY (Subscription_Id),
 CONSTRAINT Subscription_FK1 FOREIGN KEY (Plan_Id) REFERENCES Plan(Plan_Id),
 CONSTRAINT Subscription_FK2 FOREIGN KEY (Customer_Id) REFERENCES Customer(Customer_Id),
 CONSTRAINT Subscription_Id_Format CHECK (REGEXP_LIKE(Subscription_Id, '^SB\d{3,8}$'))
);

CREATE TABLE Payment (
 Payment_Id VARCHAR(10) NOT NULL,
 Subscription_Id VARCHAR(10) NOT NULL,
 Method_Id VARCHAR(10) NOT NULL,
 Cell_NO VARCHAR(11) NOT NULL,
 Amount DECIMAL(10, 3) NOT NULL,
 Account_No VARCHAR(20) NOT NULL,
 Payment_Timestamp TIMESTAMP,
 CONSTRAINT Payment_PK PRIMARY KEY (Payment_Id),
 CONSTRAINT Payment_FK1 FOREIGN KEY (Method_Id) REFERENCES Method(Method_Id),
 CONSTRAINT Payment_FK2 FOREIGN KEY (Subscription_Id) REFERENCES Subscription(Subscription_Id)
);

CREATE TABLE Plan_Line (
 Software_Id VARCHAR(10) NOT NULL,
 Plan_Id VARCHAR(10) NOT NULL,
 Software_Level VARCHAR(100) NOT NULL,
 CONSTRAINT Plan_Line_PK PRIMARY KEY (Plan_Id, Software_Id),
 CONSTRAINT Plan_Line_FK1 FOREIGN KEY (Plan_Id) REFERENCES Plan(Plan_Id),
 CONSTRAINT Plan_Line_FK2 FOREIGN KEY (Software_Id) REFERENCES Software(Software_Id)
);

Iqra Mehmood IAD LAB 10

-- Creating Triggers
CREATE OR REPLACE TRIGGER Prevent_Duplicate_Payments
BEFORE INSERT ON Payment
FOR EACH ROW
DECLARE
 v_exists NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_exists
 FROM Payment
 WHERE Subscription_Id = :NEW.Subscription_Id
 AND Method_Id = :NEW.Method_Id
 AND Amount = :NEW.Amount
 AND Payment_Timestamp = :NEW.Payment_Timestamp;

 IF v_exists > 0 THEN
 DBMS_OUTPUT.PUT_LINE('Error: Duplicate payment detected.');
 RAISE_APPLICATION_ERROR(-20001, 'Duplicate payment detected.');
 END IF;
END;
/

CREATE OR REPLACE TRIGGER Validate_Discount_Range
BEFORE INSERT OR UPDATE ON Subscription
FOR EACH ROW
BEGIN
 IF :NEW.Percent_Discount < 0 OR :NEW.Percent_Discount > 100 THEN
 DBMS_OUTPUT.PUT_LINE('Error: Discount percent must be between 0 and 100.');
 RAISE_APPLICATION_ERROR(-20002, 'Discount percent out of range.');
 END IF;
END;
/

CREATE OR REPLACE TRIGGER Calculate_Amount_ToBe_Paid
BEFORE INSERT OR UPDATE ON Subscription
FOR EACH ROW
DECLARE
 v_Price_per_month DECIMAL(10,2);
 v_Total DECIMAL(10,2);
 v_Discount_amount DECIMAL(10,2);
BEGIN
 SELECT Price_per_month INTO v_Price_per_month
 FROM Plan
 WHERE Plan_Id = :NEW.Plan_Id;
 v_Total := v_Price_per_month * :NEW.Duration_Months;
 IF :NEW.Percent_Discount IS NOT NULL THEN
 v_Discount_amount := (v_Total * :NEW.Percent_Discount) / 100;
 ELSE
 v_Discount_amount := 0;
 END IF;
 :NEW.Amount_ToBe_Paid := v_Total - v_Discount_amount;
END;

Iqra Mehmood IAD LAB 10

/

CREATE OR REPLACE TRIGGER Validate_Start_Date
BEFORE INSERT OR UPDATE ON Subscription
FOR EACH ROW
BEGIN
 IF :NEW.Start_Date > SYSDATE THEN
 DBMS_OUTPUT.PUT_LINE('Error: Start Date cannot be in the future.');
 RAISE_APPLICATION_ERROR(-20001, 'Start Date cannot be in the future.');
 END IF;
END;
/

CREATE OR REPLACE TRIGGER Validate_Unique_Plan
BEFORE INSERT ON Plan_Line
FOR EACH ROW
DECLARE
 v_conflict NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_conflict
 FROM Plan_Line
 WHERE Plan_Id = :NEW.Plan_Id
 AND Software_Id = :NEW.Software_Id
 AND Software_Level = :NEW.Software_Level;
 IF v_conflict > 0 THEN
 DBMS_OUTPUT.PUT_LINE('Error: Plan must have unique software or different levels.');
 RAISE_APPLICATION_ERROR(-20006, 'Non-unique plan detected.');
 END IF;
END;
/

CREATE OR REPLACE TRIGGER Validate_Payment_Amount
BEFORE INSERT OR UPDATE ON Payment
FOR EACH ROW
DECLARE
 v_amount_to_be_paid DECIMAL(10, 2);
BEGIN
 SELECT Amount_ToBe_Paid
 INTO v_amount_to_be_paid
 FROM Subscription
 WHERE Subscription_Id = :NEW.Subscription_Id;
 IF :NEW.Amount <= 0 THEN
 DBMS_OUTPUT.PUT_LINE('Error: Payment amount must be greater than zero.');
 RAISE_APPLICATION_ERROR(-20004, 'Invalid payment amount.');
 ELSIF :NEW.Amount != v_amount_to_be_paid THEN
 DBMS_OUTPUT.PUT_LINE('Error: Incorrect amount being paid. Expected amount is ' || v_amount_to_be_paid);
 RAISE_APPLICATION_ERROR(-20005, 'Incorrect payment amount.');
 END IF;
END;
/

Iqra Mehmood IAD LAB 10

CREATE OR REPLACE TRIGGER Update_Subscription_Status
AFTER INSERT ON Payment
FOR EACH ROW
BEGIN
 UPDATE Subscription
 SET Paid_Status = 'Yes'
 WHERE Subscription_Id = :NEW.Subscription_Id
 AND Paid_Status != 'Yes'; -- Only update if Paid_Status is not already 'Yes'
END;
/

CREATE OR REPLACE TRIGGER Validate_Customer_Subscription
BEFORE INSERT ON Subscription
FOR EACH ROW
DECLARE
 v_Unpaid_Sub_Count NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_Unpaid_Sub_Count
 FROM Subscription
 WHERE Customer_Id = :NEW.Customer_Id
 AND Paid_Status != 'Yes'; -- Payment not completed
 IF v_Unpaid_Sub_Count > 0 THEN
 DBMS_OUTPUT.PUT_LINE('Error: Cannot add a new subscription until the previous subscription is fully paid.');
 RAISE_APPLICATION_ERROR(-20007, 'Previous subscription has not been paid.');
 END IF;
END;
/

-- Creating Views
CREATE VIEW Customer_Payment_Manager_View AS
SELECT
 C.Customer_Id, C.Name, C.Email, C.City,
 P.Payment_Id, P.Amount, P.Payment_Timestamp, P.Method_Id
FROM
 Customer C
JOIN
 Subscription S ON C.Customer_Id = S.Customer_Id
JOIN
 Payment P ON S.Subscription_Id = P.Subscription_Id;

CREATE VIEW Subs_Bill_Manager_View AS
SELECT
 S.Subscription_Id, S.Customer_Id, S.Plan_Id, S.Amount_ToBe_Paid,
 P.Plan_Name, P.Price_per_month, S.Paid_Status
FROM
 Subscription S
JOIN
 Plan P ON S.Plan_Id = P.Plan_Id;

Iqra Mehmood IAD LAB 10

CREATE VIEW Cust_Subs_Manager_View AS
SELECT
 C.Customer_Id, C.Name, C.Email, C.City,
 S.Subscription_Id, S.Plan_Id, S.Duration_Months, S.Start_Date
FROM
 Customer C
JOIN
 Subscription S ON C.Customer_Id = S.Customer_Id;

-- Creating Roles and Assigning Privileges
CREATE ROLE Customer_Payment_Manager;
CREATE ROLE Subscription_Billing_Manager;
CREATE ROLE Customer_Subscription_Manager;

GRANT SELECT, INSERT, UPDATE ON Customer_Payment_Manager_View TO Customer_Payment_Manager;
GRANT SELECT, INSERT, UPDATE ON Subs_Bill_Manager_View TO Subscription_Billing_Manager;
GRANT SELECT, INSERT, UPDATE ON Cust_Subs_Manager_View TO Customer_Subscription_Manager;

-- Creating Users and Assigning Roles
CREATE USER user1 IDENTIFIED BY pwd1;
CREATE USER user2 IDENTIFIED BY pwd2;
CREATE USER user3 IDENTIFIED BY pwd3;
CREATE USER user4 IDENTIFIED BY pwd4;
CREATE USER user5 IDENTIFIED BY pwd5;
CREATE USER user6 IDENTIFIED BY pwd6;
CREATE USER user7 IDENTIFIED BY pwd7;

GRANT Customer_Payment_Manager TO user1;
GRANT Customer_Payment_Manager TO user2;
GRANT Customer_Payment_Manager TO user7;
GRANT Subscription_Billing_Manager TO user3;
GRANT Subscription_Billing_Manager TO user4;
GRANT Subscription_Billing_Manager TO user7;
GRANT Customer_Subscription_Manager TO user5;
GRANT Customer_Subscription_Manager TO user6;
GRANT Customer_Subscription_Manager TO user7;

Iqra Mehmood IAD LAB 10

DATA INSERTION
-- CUSTOMER (40 rows)
INSERT INTO Customer (Customer_Id, Email, Name, Cell_NO, Country, City) VALUES
('C001', 'alex.johnson@example.com', 'Alex Johnson', '10000000001', 'US', 'New York');
INSERT INTO Customer (Customer_Id, Email, Name, Cell_NO, Country, City) VALUES
('C002', 'maria.garcia@example.com', 'Maria Garcia', '10000000002', 'US', 'Los Angeles');
INSERT INTO Customer (Customer_Id, Email, Name, Cell_NO, Country, City) VALUES
('C003', 'li.chen@example.com', 'Li Chen', '10000000003', 'CN', 'Beijing');

-- METHOD (8 rows)
INSERT INTO Method (Method_Id, Method_Name) VALUES ('M101', 'Credit Card');
INSERT INTO Method (Method_Id, Method_Name) VALUES ('M102', 'PayPal');
INSERT INTO Method (Method_Id, Method_Name) VALUES ('M103', 'Bank Transfer');

-- SOFTWARE (30 rows)
INSERT INTO Software (Software_Id, Software_Name) VALUES ('SW101', 'Microsoft Word');
INSERT INTO Software (Software_Id, Software_Name) VALUES ('SW102', 'Microsoft Excel');
INSERT INTO Software (Software_Id, Software_Name) VALUES ('SW103', 'Microsoft PowerPoint');

Iqra Mehmood IAD LAB 10

-- PLAN (10 rows)
INSERT INTO Plan (Plan_Id, Plan_Name, Price_per_month) VALUES ('P001', 'Basic Plan', 9.990);
INSERT INTO Plan (Plan_Id, Plan_Name, Price_per_month) VALUES ('P002', 'Standard Plan', 19.990);
INSERT INTO Plan (Plan_Id, Plan_Name, Price_per_month) VALUES ('P003', 'Premium Plan', 29.990);

-- PLAN_LINE (50 rows)
INSERT INTO Plan_Line (Plan_Id, Software_Id, Software_Level) VALUES ('P001', 'SW101', 'Standard');
INSERT INTO Plan_Line (Plan_Id, Software_Id, Software_Level) VALUES ('P002', 'SW102', 'Advanced');
INSERT INTO Plan_Line (Plan_Id, Software_Id, Software_Level) VALUES ('P003', 'SW103', 'Enterprise');
INSERT INTO Plan_Line (Plan_Id, Software_Id, Software_Level) VALUES ('P004', 'SW104', 'Professional');

Iqra Mehmood IAD LAB 10

-- SUBSCRIPTION (32 rows)
INSERT INTO Subscription (Subscription_Id, Customer_Id, Plan_Id, Duration_Months, Start_Date, Percent_Discount,
Paid_Status) VALUES ('SB001', 'C001', 'P001', 6, TO_DATE('2023-01-01', 'YYYY-MM-DD'), 10, 'Yes');
INSERT INTO Subscription (Subscription_Id, Customer_Id, Plan_Id, Duration_Months, Start_Date, Percent_Discount,
Paid_Status) VALUES ('SB002', 'C002', 'P002', 8, TO_DATE('2023-02-01', 'YYYY-MM-DD'), 15, 'No');
INSERT INTO Subscription (Subscription_Id, Customer_Id, Plan_Id, Duration_Months, Start_Date, Percent_Discount,
Paid_Status) VALUES ('SB003', 'C003', 'P003', 13, TO_DATE('2024-03-01', 'YYYY-MM-DD'), 30, 'Yes');
INSERT INTO Subscription (Subscription_Id, Customer_Id, Plan_Id, Duration_Months, Start_Date, Percent_Discount,
Paid_Status) VALUES ('SB004', 'C004', 'P004', 25, TO_DATE('2024-04-01', 'YYYY-MM-DD'), 45, 'No');

-- PAYMENT (13 rows)
INSERT INTO Payment (Payment_Id, Subscription_Id, Method_Id, Cell_NO, Amount, Account_No,
Payment_Timestamp)
VALUES ('P001', 'SB001', 'M101', '10000000001', 53.950, 'ACC001', TO_TIMESTAMP('2024-01-01 10:00:00', 'YYYY-
MM-DD HH24:MI:SS'));
INSERT INTO Payment (Payment_Id, Subscription_Id, Method_Id, Cell_NO, Amount, Account_No,
Payment_Timestamp)
VALUES ('P002', 'SB003', 'M101', '10000000003', 272.910, 'ACC002', TO_TIMESTAMP('2024-03-01 12:00:00', 'YYYY-
MM-DD HH24:MI:SS'));
INSERT INTO Payment (Payment_Id, Subscription_Id, Method_Id, Cell_NO, Amount, Account_No,
Payment_Timestamp)
VALUES ('P003', 'SB007', 'M103', '10000000007', 305.900, 'ACC003', TO_TIMESTAMP('2024-07-01 14:00:00', 'YYYY-
MM-DD HH24:MI:SS'));

Iqra Mehmood IAD LAB 10

APPLYING QUERIES

1) Get the total amount paid by customers of every country

SELECT
 C.Country,
 SUM(P.Amount) AS Total_Amount_Paid
FROM
 Customer C
JOIN
 Subscription S ON C.Customer_Id = S.Customer_Id
JOIN
 Payment P ON S.Subscription_Id = P.Subscription_Id
GROUP BY
 C.Country
ORDER BY
 C.Country;

2) List the plans and their total revenue, including the number of subscribers
SELECT
 P.Plan_Id,
 P.Plan_Name,
 COUNT(S.Subscription_Id) AS Number_of_Subscribers,
 SUM(Payment.Amount) AS Total_Revenue
FROM
 Plan P
JOIN
 Subscription S ON P.Plan_Id = S.Plan_Id
JOIN
 Payment ON S.Subscription_Id = Payment.Subscription_Id
GROUP BY
 P.Plan_Id, P.Plan_Name
ORDER BY
 Total_Revenue DESC;

Iqra Mehmood IAD LAB 10

3) List top 5 customers who have received the maximum discount on a plan
SELECT * FROM (
 SELECT
 C.Customer_Id,
 C.Name,
 S.Plan_Id,
 S.Percent_Discount
 FROM
 Customer C
 JOIN
 Subscription S ON C.Customer_Id = S.Customer_Id
 ORDER BY
 S.Percent_Discount DESC
)
WHERE ROWNUM <= 5;

4) Get customers who have never made a payment but have active subscriptions
SELECT
 C.Customer_Id,
 C.Name,
 S.Subscription_Id,
 S.Paid_Status
FROM
 Customer C
JOIN
 Subscription S ON C.Customer_Id = S.Customer_Id
WHERE
 S.Subscription_Id NOT IN (SELECT Subscription_Id FROM Payment)
 AND S.Paid_Status = 'No';

Iqra Mehmood IAD LAB 10

5) List all subscriptions with the calculated total amount after discount, and the difference between the
actual and expected amounts
SELECT
 S.Subscription_Id,
 S.Customer_Id,
 S.Plan_Id,
 (P.Price_per_month * S.Duration_Months) AS Actual_Amount,
 S.Amount_ToBe_Paid,
 (P.Price_per_month * S.Duration_Months) - S.Amount_ToBe_Paid AS Discount_Amount
FROM
 Subscription S
JOIN
 Plan P ON S.Plan_Id = P.Plan_Id;

6) Find customers who have made payments to all plans they are subscribed to
SELECT
 C.Customer_Id,
 C.Name
FROM
 Customer C
JOIN
 Subscription S ON C.Customer_Id = S.Customer_Id
GROUP BY
 C.Customer_Id, C.Name
HAVING
 COUNT(DISTINCT S.Plan_Id) =
 (SELECT COUNT(DISTINCT S2.Plan_Id)
 FROM Subscription S2
 WHERE S2.Customer_Id = C.Customer_Id);

Iqra Mehmood IAD LAB 10

7) Get the total number of payments for each payment method, along with the total sum of payments
SELECT
 M.Method_Name,
 COUNT(P.Payment_Id) AS Total_Payments,
 SUM(P.Amount) AS Total_Amount
FROM
 Payment P
JOIN
 Method M ON P.Method_Id = M.Method_Id
GROUP BY
 M.Method_Name
ORDER BY
 Total_Amount DESC;

8) Get the plan with the highest number of active subscriptions in 2023-01
SELECT
 S.Plan_Id,
 P.Plan_Name,
 COUNT(*) AS Active_Subscription_Count
FROM
 Subscription S
JOIN
 Plan P ON S.Plan_Id = P.Plan_Id
WHERE

Iqra Mehmood IAD LAB 10

 TO_CHAR(S.Start_Date, 'YYYY-MM') = '2023-01'
GROUP BY
 S.Plan_Id, P.Plan_Name
HAVING
 COUNT(*) = (
 SELECT MAX(Active_Subscription_Count)
 FROM (
 SELECT COUNT(*) AS Active_Subscription_Count
 FROM Subscription S2
 WHERE TO_CHAR(S2.Start_Date, 'YYYY-MM') = '2023-01'
 GROUP BY S2.Plan_Id
)
)
ORDER BY
 Active_Subscription_Count DESC;

9) Find the average subscription duration for each plan
SELECT
 P.Plan_Id,
 P.Plan_Name,
 AVG(S.Duration_Months) AS Average_Duration
FROM
 Subscription S
JOIN
 Plan P ON S.Plan_Id = P.Plan_Id
GROUP BY
 P.Plan_Id, P.Plan_Name;

10) Identify customers who have not used credit card payment method but have subscriptions
SELECT
 C.Customer_Id,
 C.Name
FROM
 Customer C
WHERE
 C.Customer_Id NOT IN (
 SELECT DISTINCT S.Customer_Id
 FROM Subscription S
 JOIN Payment P ON S.Subscription_Id = P.Subscription_Id
 JOIN Method M ON P.Method_Id = M.Method_Id
 WHERE M.Method_Name = 'Credit Card'
);

Iqra Mehmood IAD LAB 10

11) Find the top 2 most expensive plans based on their total amount of payments made
SELECT *
FROM (
 SELECT
 P.Plan_Id,
 SUM(PM.Amount) AS Total_Payments
 FROM
 Payment PM
 JOIN
 Subscription S ON PM.Subscription_Id = S.Subscription_Id
 JOIN
 Plan P ON S.Plan_Id = P.Plan_Id
 GROUP BY
 P.Plan_Id
 ORDER BY
 Total_Payments DESC
)
WHERE ROWNUM <= 2;

12) Calculate the total discount amount provided across all plans in the last 6 months
SELECT
 SUM((P.Price_per_month * S.Duration_Months) - S.Amount_ToBe_Paid) AS Total_Discount
FROM
 Payment PM
JOIN

Iqra Mehmood IAD LAB 10

 Subscription S ON PM.Subscription_Id = S.Subscription_Id
JOIN
 Plan P ON S.Plan_Id = P.Plan_Id
WHERE
 PM.Payment_Timestamp >= ADD_MONTHS(SYSDATE, -6);

13) Identify customers who have never received a discount on their subscription
SELECT
 C.Customer_Id
FROM
 Customer C
WHERE
 C.Customer_Id NOT IN (
 SELECT DISTINCT S.Customer_Id
 FROM Subscription S
 JOIN Payment PM ON S.Subscription_Id = PM.Subscription_Id
 WHERE S.Percent_Discount > 0
);

14) Find the most frequent payment method used by customers in US
SELECT
 payment_method,
 payment_count
FROM (
 SELECT
 p.Method_Id AS payment_method,
 COUNT(*) AS payment_count
 FROM
 Payment p

Iqra Mehmood IAD LAB 10

 JOIN
 Subscription s ON p.Subscription_Id = s.Subscription_Id
 JOIN
 Customer c ON s.Customer_Id = c.Customer_Id
 WHERE
 c.Country = 'US'
 GROUP BY
 p.Method_Id
)
WHERE
 payment_count = (
 SELECT
 MAX(COUNT(*))
 FROM
 Payment p
 JOIN
 Subscription s ON p.Subscription_Id = s.Subscription_Id
 JOIN
 Customer c ON s.Customer_Id = c.Customer_Id
 WHERE
 c.Country = 'US'
 GROUP BY
 p.Method_Id
);

WEB APPLICATION IMPLEMENTATION

The created web application is available at:
https://iqramehmood.somee.com/LAB%2011/Home.aspx

https://iqramehmood.somee.com/LAB%2011/Home.aspx

