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PROJECT PROPOSAL 
This project is a data-driven ASP.NET Web Forms application designed to manage customer subscriptions, 
billing, and payments for Software-as-a-Service (SaaS) products. It supports role-based functionalities for 
administrators and multiple types of managers, ensuring secure and streamlined access to relevant modules. 

 

KEY FEATURES 

Data-Driven Functionality: 
All modules, including customer registration, plan subscription, payments, and admin operations, interact 
with a centralized SQL Server database (SAAS), ensuring persistent and structured data storage. 

 

User Roles & Access Control: 
The application defines roles such as: 

• Administrator 

• Customer Subscription Manager 

• Customer Payment Manager 

• Subscription Billing Manager 

• Customer 

Role-specific pages and functionalities are implemented using cookie-based state tracking and controlled 
redirection. 

 

State Management: 
User sessions and login identity are maintained using cookies (e.g., Customer_Id, Admin_Id) to persist 
authenticated state across pages. 

 

Input Validation: 
Both client-side (via ASP.NET validators) and server-side validation ensure input integrity (e.g., required 
fields, correct formats for payment IDs, phone numbers, etc.). 

 

Data Security: 

• All SQL queries are parameterized queries to prevent SQL injection. 

• Password fields are masked and validated. 

• Unauthorized access to protected pages is restricted based on login status and user role. 

 

Subscription & Payment Workflow: 
Customers can subscribe to plans, make payments, and view history. Admins and managers can view and 
edit records such as customers, subscriptions, payments, and login credentials. 

 

SaaS SUBSCRIPTION PLATFORM 
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Extensibility: 
The system is modular and scalable, allowing for future integration of email notifications, payment gateways, 
or analytics dashboards. 

 

CONCLUSION 

This project successfully meets the criteria of a secure, validated, role-based, and state-managed data-driven 
web application, aligning well with real-world SaaS business operations. 

 

 

 

 

SOFTWARE REQUIREMENTS SPECIFICATIONS 
 

FUNCTIONAL REQUIREMENTS 

User Authentication 

• The system allows customers and admins/managers to log in. 

• Role is selected (for admin) and verified at login. 

• Invalid login attempts are tracked; lockout is implemented after 3 failures for 2 minutes. 

Customer Registration 

• Customers can register with their details. 

• System auto-generates a Customer_Id (e.g., C001, C002…). 

• Credentials are stored in Login table. 

Subscription Management 

• Customers can view and subscribe to plans. 

• System auto-generates a Subscription_Id. 

• Discounts and total price are calculated based on duration. 

Payment Management 

• Customers can view unpaid subscriptions and make payments. 

• System auto-generates a Payment_Id. 

• Payments are stored and linked to the subscription. 

Role-Based Admin Functionalities 

• Administrator can view and edit Admin and Login tables. 

• Customer Subscription Manager (CSM) can view/edit Customer and Subscription data. 

• Customer Payment Manager (CPM) can view/edit Payment and Method tables. 

• Subscription Billing Manager (SBM) can be extended to manage plan pricing and invoicing. 
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NON-FUNCTIONAL REQUIREMENTS 

Usability 

• Intuitive navigation and role-based redirection. 

• Clear form labels, validation error messages, and instructions. 

Security 

• Parameterized queries prevent SQL injection. 

• Cookies are used for session persistence. 

• Passwords are validated and masked on input. 

• Role-based page access control. 

Maintainability 

• Modular codebase with dedicated event handlers. 

• Simple and structured ASP.NET page organization. 

Compatibility 

• Runs on ASP.NET Framework 4.0+. 

• Hosted on Somee with SQL Server backend. 

Scalability 

• System can scale to more roles and modules. 

 

 

COMPONENT MODEL 
 

FRONTEND COMPONENTS 
 

Component Description 

User Interface (ASP.NET Web Forms) 

- Home.aspx (Landing page) 
- Login.aspx (Authentication) 

- Dashboard.aspx (User dashboard) 
- Admin.aspx (Admin panel) 

CSS & Styling 
- MasterPage.master (Consistent layout) 

- styles.css (Responsive design) 

 

DATABASE COMPONENTS 
 

Component Description 

SQL Server Database 

- Login (User credentials) 
- Customer (User profiles) 

- Plans (Subscription packages) 
- Subscription (User subscriptions) 

- Payment (Transaction records) 
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BACKEND COMPONENTS 
 

Component Description 

Business Logic (VB.NET) 

- Login authentication 
- Role-based authorization 

- Subscription management 
- Payment processing 

Data Access Layer - SQL queries (parameterized) 

Session Management 
- Cookie-based authentication 

- Session timeout handling 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEPLOYMENT MODEL 
 

Development: Microsoft Visual Studio (ASP .NET with VB .NET) 

Server:  IIS/somee’s online server 

Database: Microsoft SQL Server 

Client:  Web Browser 

Hosting: somee.com 

 

 

 

 

 

UI Layer: Web Forms (.aspx pages) 

Business Logic: VB .NET (code behind) 

Data Access Layer: ADO .NET (CRUD operations) 

SQL Server Database:  (data storage) 

Client’s PC/Browser Web Server (somee) Database (somee) 
HTTPS 
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DATABASE MODEL 
 

ENTERPRISE DATA MODEL 
 

 
• A customer subscribes a subscription 

• A subscription has a plan that is subscribed 

• A plan has plan_lines 

• Plan_lines contain software 

• A subscription requires payment 

• A payment is made by a method 

 

 

ENTITIES AND ATTRIBUTES 
 
Following are the attributes for each entity and their properties: 
 
CUSTOMER 

Attribute Purpose Nullable Key 

Customer_Id Unique identifier for the customer No Primary Key 

Email Customer's email address No Unique 

Name Customer's full name No  

Cell_NO Customer's mobile phone number No  

Country Customer's country code (2 characters) Yes  

City Customer's city Yes  
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METHOD 
Attribute Purpose Nullable Key 

Method_Id Unique identifier for the payment method No Primary Key 

Method_Name Name of the payment method No Unique 

 
PLAN 

Attribute Purpose Nullable Key 

Plan_Id Unique identifier for the subscription plan No Primary Key 

Plan_Name Name of the subscription plan No Unique 

Price_Per_Month Monthly cost for the plan No   

 
SOFTWARE 

Attribute Purpose Nullable Key 

Software_Id Unique identifier for the software No Primary Key 

Software_Name Name of the software No Unique 

 
SUBSCRIPTION 

Attribute Purpose Nullable Key 

Subscription_Id Unique identifier for the subscription No Primary Key 

Customer_Id Identifier for the customer subscribing No Foreign Key (Customer) 

Plan_Id Identifier for the chosen subscription plan No Foreign Key (Plan) 

Duration_Months Duration of the subscription in months No   

Start_Date Date when the subscription starts No   

Percent_Discount Discount percentage applied to the subscription Yes   

Amount_ToBe_Paid Total amount to be paid after discount No   

Paid_Status Status of the payment ("Yes" or "No") Yes   

 
PAYMENT 

Attribute Purpose Nullable Key 

Payment_Id Unique identifier for the payment No Primary Key 

Subscription_Id Identifier for the associated subscription No Foreign Key (Subscription) 

Method_Id Identifier for the payment method No Foreign Key (Method) 

Cell_NO Mobile number used for payment No   

Amount Total payment amount No   

Account_No Account number (optional) for payment Yes   

Payment_Timestamp Date and time when the payment was made Yes   

 
PLAN_LINE 

Attribute Purpose Nullable Key 

Software_Id Identifier for the software in the plan No Foreign Key (Software) 

Plan_Id Identifier for the plan associated with the software No Foreign Key (Plan) 

Software_Level Level of the software in the plan (e.g. Basic, Premium) No  
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ENTITY RELATIONSHIP MODEL 
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COMPOSITE USAGE MODEL 
The Composite Usage Model relative to the queries applied on the database is as follows: 
~Access Frequency (per minute) 
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RELATIONAL SCHEMA 
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NORMALIZED SCHEMA 

 

• All the tables do not have any non-atomic value, so they are in 1 NF. 

• All the tables do not have any partial functional dependency, so they are in 2 NF. 

• All the tables do not have any transitive dependency, so they are in 3 NF. 
 

DATABASE CREATION 
-- Creating Relations 
CREATE TABLE Customer ( 
    Customer_Id   VARCHAR(10)       NOT NULL, 
    Email         VARCHAR(30)   NOT NULL, 
    Name          VARCHAR(30)    NOT NULL, 
    Cell_NO       VARCHAR(11)    NOT NULL, 
    Country       VARCHAR(2), 
    City          VARCHAR(20), 
    CONSTRAINT Customer_PK PRIMARY KEY (Customer_Id), 
    CONSTRAINT CellNo_Check CHECK (REGEXP_LIKE(Cell_NO, '^\d{11}$')), 
    CONSTRAINT Email_Unique UNIQUE (Email), 
    CONSTRAINT Customer_Id_Format CHECK (REGEXP_LIKE(Customer_Id, '^C\d{3,9}$')) 
); 
 
CREATE TABLE Method ( 
    Method_Id      VARCHAR(10)    NOT NULL, 
    Method_Name    VARCHAR(20)    NOT NULL, 
    CONSTRAINT Method_PK PRIMARY KEY (Method_Id), 
    CONSTRAINT Method_Name_Unique UNIQUE (Method_Name), 
    CONSTRAINT Method_Id_Format CHECK (REGEXP_LIKE(Method_Id, '^M\d{3,9}$')) 
); 
 
CREATE TABLE Plan ( 
    Plan_Id           VARCHAR(10)    NOT NULL, 
    Plan_Name         VARCHAR(30)    NOT NULL, 
    Price_per_month   DECIMAL(6, 3)  NOT NULL, 
    CONSTRAINT Plan_PK PRIMARY KEY (Plan_Id), 
    CONSTRAINT Plan_Name_Unique UNIQUE (Plan_Name), 
    CONSTRAINT Plan_Id_Format CHECK (REGEXP_LIKE(Plan_Id, '^P\d{3,9}$')) 
); 
 
CREATE TABLE Software ( 
    Software_Id    VARCHAR(10)    NOT NULL, 
    Software_Name  VARCHAR(50)    NOT NULL, 
    CONSTRAINT Software_PK PRIMARY KEY (Software_Id), 
    CONSTRAINT Software_Name_Unique UNIQUE (Software_Name), 
    CONSTRAINT Software_Id_Format CHECK (REGEXP_LIKE(Software_Id, '^SW\d{3,8}$')) 
); 
 
CREATE TABLE Subscription ( 
    Subscription_Id    VARCHAR(10)        NOT NULL, 
    Customer_Id        VARCHAR(10)        NOT NULL, 
 



Iqra Mehmood   IAD LAB 10 

 

    Plan_Id            VARCHAR(10)        NOT NULL, 
    Duration_Months    NUMBER             NOT NULL, 
    Start_Date         DATE               NOT NULL, 
    Percent_Discount   DECIMAL(5,2), 
    Amount_ToBe_Paid   DECIMAL(10,2), 
    Paid_Status        VARCHAR(3)         DEFAULT 'No', 
    CONSTRAINT Subscription_PK PRIMARY KEY (Subscription_Id), 
    CONSTRAINT Subscription_FK1 FOREIGN KEY (Plan_Id) REFERENCES Plan(Plan_Id), 
    CONSTRAINT Subscription_FK2 FOREIGN KEY (Customer_Id) REFERENCES Customer(Customer_Id), 
    CONSTRAINT Subscription_Id_Format CHECK (REGEXP_LIKE(Subscription_Id, '^SB\d{3,8}$')) 
); 
 
CREATE TABLE Payment ( 
    Payment_Id         VARCHAR(10)    NOT NULL, 
    Subscription_Id    VARCHAR(10)    NOT NULL, 
    Method_Id          VARCHAR(10)    NOT NULL, 
    Cell_NO            VARCHAR(11)    NOT NULL, 
    Amount             DECIMAL(10, 3)  NOT NULL, 
    Account_No         VARCHAR(20)    NOT NULL, 
    Payment_Timestamp  TIMESTAMP, 
    CONSTRAINT Payment_PK PRIMARY KEY (Payment_Id), 
    CONSTRAINT Payment_FK1 FOREIGN KEY (Method_Id) REFERENCES Method(Method_Id), 
    CONSTRAINT Payment_FK2 FOREIGN KEY (Subscription_Id) REFERENCES Subscription(Subscription_Id) 
); 
 
CREATE TABLE Plan_Line ( 
    Software_Id  VARCHAR(10)   NOT NULL, 
    Plan_Id          VARCHAR(10)   NOT NULL, 
    Software_Level       VARCHAR(100)    NOT NULL, 
    CONSTRAINT Plan_Line_PK PRIMARY KEY (Plan_Id, Software_Id), 
    CONSTRAINT Plan_Line_FK1 FOREIGN KEY (Plan_Id) REFERENCES Plan(Plan_Id), 
    CONSTRAINT Plan_Line_FK2 FOREIGN KEY (Software_Id) REFERENCES Software(Software_Id) 
); 
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-- Creating Triggers 
CREATE OR REPLACE TRIGGER Prevent_Duplicate_Payments 
BEFORE INSERT ON Payment 
FOR EACH ROW 
DECLARE 
    v_exists NUMBER; 
BEGIN 
    SELECT COUNT(*) 
    INTO v_exists 
    FROM Payment 
    WHERE Subscription_Id = :NEW.Subscription_Id 
      AND Method_Id = :NEW.Method_Id 
      AND Amount = :NEW.Amount 
      AND Payment_Timestamp = :NEW.Payment_Timestamp; 
     
    IF v_exists > 0 THEN 
        DBMS_OUTPUT.PUT_LINE('Error: Duplicate payment detected.'); 
        RAISE_APPLICATION_ERROR(-20001, 'Duplicate payment detected.'); 
    END IF; 
END; 
/ 
 
CREATE OR REPLACE TRIGGER Validate_Discount_Range 
BEFORE INSERT OR UPDATE ON Subscription 
FOR EACH ROW 
BEGIN 
    IF :NEW.Percent_Discount < 0 OR :NEW.Percent_Discount > 100 THEN 
        DBMS_OUTPUT.PUT_LINE('Error: Discount percent must be between 0 and 100.'); 
        RAISE_APPLICATION_ERROR(-20002, 'Discount percent out of range.'); 
    END IF; 
END; 
/ 
 
CREATE OR REPLACE TRIGGER Calculate_Amount_ToBe_Paid 
BEFORE INSERT OR UPDATE ON Subscription 
FOR EACH ROW 
DECLARE 
    v_Price_per_month DECIMAL(10,2); 
    v_Total DECIMAL(10,2); 
    v_Discount_amount DECIMAL(10,2); 
BEGIN 
    SELECT Price_per_month INTO v_Price_per_month  
    FROM Plan  
    WHERE Plan_Id = :NEW.Plan_Id; 
    v_Total := v_Price_per_month * :NEW.Duration_Months; 
    IF :NEW.Percent_Discount IS NOT NULL THEN 
        v_Discount_amount := (v_Total * :NEW.Percent_Discount) / 100; 
    ELSE 
        v_Discount_amount := 0; 
    END IF; 
    :NEW.Amount_ToBe_Paid := v_Total - v_Discount_amount; 
END; 
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/ 
 
CREATE OR REPLACE TRIGGER Validate_Start_Date 
BEFORE INSERT OR UPDATE ON Subscription 
FOR EACH ROW 
BEGIN 
    IF :NEW.Start_Date > SYSDATE THEN 
        DBMS_OUTPUT.PUT_LINE('Error: Start Date cannot be in the future.'); 
        RAISE_APPLICATION_ERROR(-20001, 'Start Date cannot be in the future.'); 
    END IF; 
END; 
/ 
 
CREATE OR REPLACE TRIGGER Validate_Unique_Plan 
BEFORE INSERT ON Plan_Line 
FOR EACH ROW 
DECLARE 
    v_conflict NUMBER; 
BEGIN 
    SELECT COUNT(*) 
    INTO v_conflict 
    FROM Plan_Line 
    WHERE Plan_Id = :NEW.Plan_Id 
      AND Software_Id = :NEW.Software_Id 
      AND Software_Level = :NEW.Software_Level; 
    IF v_conflict > 0 THEN 
        DBMS_OUTPUT.PUT_LINE('Error: Plan must have unique software or different levels.'); 
        RAISE_APPLICATION_ERROR(-20006, 'Non-unique plan detected.'); 
    END IF; 
END; 
/ 
 
CREATE OR REPLACE TRIGGER Validate_Payment_Amount 
BEFORE INSERT OR UPDATE ON Payment 
FOR EACH ROW 
DECLARE 
    v_amount_to_be_paid DECIMAL(10, 2); 
BEGIN 
    SELECT Amount_ToBe_Paid 
    INTO v_amount_to_be_paid 
    FROM Subscription 
    WHERE Subscription_Id = :NEW.Subscription_Id; 
        IF :NEW.Amount <= 0 THEN 
        DBMS_OUTPUT.PUT_LINE('Error: Payment amount must be greater than zero.'); 
        RAISE_APPLICATION_ERROR(-20004, 'Invalid payment amount.'); 
    ELSIF :NEW.Amount != v_amount_to_be_paid THEN 
        DBMS_OUTPUT.PUT_LINE('Error: Incorrect amount being paid. Expected amount is ' || v_amount_to_be_paid); 
        RAISE_APPLICATION_ERROR(-20005, 'Incorrect payment amount.'); 
    END IF; 
END; 
/ 
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CREATE OR REPLACE TRIGGER Update_Subscription_Status 
AFTER INSERT ON Payment 
FOR EACH ROW 
BEGIN 
    UPDATE Subscription 
    SET Paid_Status = 'Yes' 
    WHERE Subscription_Id = :NEW.Subscription_Id 
      AND Paid_Status != 'Yes'; -- Only update if Paid_Status is not already 'Yes' 
END; 
/ 
 
CREATE OR REPLACE TRIGGER Validate_Customer_Subscription 
BEFORE INSERT ON Subscription 
FOR EACH ROW 
DECLARE 
    v_Unpaid_Sub_Count NUMBER; 
BEGIN 
    SELECT COUNT(*) 
    INTO v_Unpaid_Sub_Count 
    FROM Subscription 
    WHERE Customer_Id = :NEW.Customer_Id 
      AND Paid_Status != 'Yes'; -- Payment not completed 
    IF v_Unpaid_Sub_Count > 0 THEN 
        DBMS_OUTPUT.PUT_LINE('Error: Cannot add a new subscription until the previous subscription is fully paid.'); 
        RAISE_APPLICATION_ERROR(-20007, 'Previous subscription has not been paid.'); 
    END IF; 
END; 
/ 
 
 

-- Creating Views 
CREATE VIEW Customer_Payment_Manager_View AS 
SELECT  
    C.Customer_Id, C.Name, C.Email, C.City,  
    P.Payment_Id, P.Amount, P.Payment_Timestamp, P.Method_Id 
FROM  
    Customer C 
JOIN  
    Subscription S ON C.Customer_Id = S.Customer_Id 
JOIN  
    Payment P ON S.Subscription_Id = P.Subscription_Id; 
 
CREATE VIEW Subs_Bill_Manager_View AS 
SELECT  
    S.Subscription_Id, S.Customer_Id, S.Plan_Id, S.Amount_ToBe_Paid,  
    P.Plan_Name, P.Price_per_month, S.Paid_Status 
FROM  
    Subscription S 
JOIN  
    Plan P ON S.Plan_Id = P.Plan_Id; 
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CREATE VIEW Cust_Subs_Manager_View AS 
SELECT  
    C.Customer_Id, C.Name, C.Email, C.City,  
    S.Subscription_Id, S.Plan_Id, S.Duration_Months, S.Start_Date 
FROM  
    Customer C 
JOIN  
    Subscription S ON C.Customer_Id = S.Customer_Id; 
 
 

-- Creating Roles and Assigning Privileges 
CREATE ROLE Customer_Payment_Manager; 
CREATE ROLE Subscription_Billing_Manager; 
CREATE ROLE Customer_Subscription_Manager; 
 
GRANT SELECT, INSERT, UPDATE ON Customer_Payment_Manager_View TO Customer_Payment_Manager; 
GRANT SELECT, INSERT, UPDATE ON Subs_Bill_Manager_View TO Subscription_Billing_Manager; 
GRANT SELECT, INSERT, UPDATE ON Cust_Subs_Manager_View TO Customer_Subscription_Manager; 
 
 

-- Creating Users and Assigning Roles 
CREATE USER user1 IDENTIFIED BY pwd1; 
CREATE USER user2 IDENTIFIED BY pwd2; 
CREATE USER user3 IDENTIFIED BY pwd3; 
CREATE USER user4 IDENTIFIED BY pwd4; 
CREATE USER user5 IDENTIFIED BY pwd5; 
CREATE USER user6 IDENTIFIED BY pwd6; 
CREATE USER user7 IDENTIFIED BY pwd7; 
 
GRANT Customer_Payment_Manager TO user1; 
GRANT Customer_Payment_Manager TO user2; 
GRANT Customer_Payment_Manager TO user7; 
GRANT Subscription_Billing_Manager TO user3; 
GRANT Subscription_Billing_Manager TO user4; 
GRANT Subscription_Billing_Manager TO user7; 
GRANT Customer_Subscription_Manager TO user5; 
GRANT Customer_Subscription_Manager TO user6; 
GRANT Customer_Subscription_Manager TO user7; 
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DATA INSERTION 
-- CUSTOMER (40 rows) 
INSERT INTO Customer (Customer_Id, Email, Name, Cell_NO, Country, City) VALUES 
('C001', 'alex.johnson@example.com', 'Alex Johnson', '10000000001', 'US', 'New York'); 
INSERT INTO Customer (Customer_Id, Email, Name, Cell_NO, Country, City) VALUES 
('C002', 'maria.garcia@example.com', 'Maria Garcia', '10000000002', 'US', 'Los Angeles'); 
INSERT INTO Customer (Customer_Id, Email, Name, Cell_NO, Country, City) VALUES 
('C003', 'li.chen@example.com', 'Li Chen', '10000000003', 'CN', 'Beijing'); 
 

 
 

-- METHOD (8 rows) 
INSERT INTO Method (Method_Id, Method_Name) VALUES ('M101', 'Credit Card'); 
INSERT INTO Method (Method_Id, Method_Name) VALUES ('M102', 'PayPal'); 
INSERT INTO Method (Method_Id, Method_Name) VALUES ('M103', 'Bank Transfer');  
 

 
 
 

-- SOFTWARE (30 rows) 
INSERT INTO Software (Software_Id, Software_Name) VALUES ('SW101', 'Microsoft Word'); 
INSERT INTO Software (Software_Id, Software_Name) VALUES ('SW102', 'Microsoft Excel'); 
INSERT INTO Software (Software_Id, Software_Name) VALUES ('SW103', 'Microsoft PowerPoint'); 
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-- PLAN (10 rows) 
INSERT INTO Plan (Plan_Id, Plan_Name, Price_per_month) VALUES ('P001', 'Basic Plan', 9.990); 
INSERT INTO Plan (Plan_Id, Plan_Name, Price_per_month) VALUES ('P002', 'Standard Plan', 19.990); 
INSERT INTO Plan (Plan_Id, Plan_Name, Price_per_month) VALUES ('P003', 'Premium Plan', 29.990); 
 

 
 

-- PLAN_LINE (50 rows) 
INSERT INTO Plan_Line (Plan_Id, Software_Id, Software_Level) VALUES ('P001', 'SW101', 'Standard'); 
INSERT INTO Plan_Line (Plan_Id, Software_Id, Software_Level) VALUES ('P002', 'SW102', 'Advanced'); 
INSERT INTO Plan_Line (Plan_Id, Software_Id, Software_Level) VALUES ('P003', 'SW103', 'Enterprise'); 
INSERT INTO Plan_Line (Plan_Id, Software_Id, Software_Level) VALUES ('P004', 'SW104', 'Professional'); 
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-- SUBSCRIPTION (32 rows) 
INSERT INTO Subscription (Subscription_Id, Customer_Id, Plan_Id, Duration_Months, Start_Date, Percent_Discount, 
Paid_Status) VALUES ('SB001', 'C001', 'P001', 6, TO_DATE('2023-01-01', 'YYYY-MM-DD'), 10, 'Yes'); 
INSERT INTO Subscription (Subscription_Id, Customer_Id, Plan_Id, Duration_Months, Start_Date, Percent_Discount, 
Paid_Status) VALUES ('SB002', 'C002', 'P002', 8, TO_DATE('2023-02-01', 'YYYY-MM-DD'), 15, 'No'); 
INSERT INTO Subscription (Subscription_Id, Customer_Id, Plan_Id, Duration_Months, Start_Date, Percent_Discount, 
Paid_Status) VALUES ('SB003', 'C003', 'P003', 13, TO_DATE('2024-03-01', 'YYYY-MM-DD'), 30, 'Yes'); 
INSERT INTO Subscription (Subscription_Id, Customer_Id, Plan_Id, Duration_Months, Start_Date, Percent_Discount, 
Paid_Status) VALUES ('SB004', 'C004', 'P004', 25, TO_DATE('2024-04-01', 'YYYY-MM-DD'), 45, 'No'); 
 

 
 

-- PAYMENT (13 rows) 
INSERT INTO Payment (Payment_Id, Subscription_Id, Method_Id, Cell_NO, Amount, Account_No, 
Payment_Timestamp)  
VALUES ('P001', 'SB001', 'M101', '10000000001', 53.950, 'ACC001', TO_TIMESTAMP('2024-01-01 10:00:00', 'YYYY-
MM-DD HH24:MI:SS')); 
INSERT INTO Payment (Payment_Id, Subscription_Id, Method_Id, Cell_NO, Amount, Account_No, 
Payment_Timestamp)  
VALUES ('P002', 'SB003', 'M101', '10000000003', 272.910, 'ACC002', TO_TIMESTAMP('2024-03-01 12:00:00', 'YYYY-
MM-DD HH24:MI:SS')); 
INSERT INTO Payment (Payment_Id, Subscription_Id, Method_Id, Cell_NO, Amount, Account_No, 
Payment_Timestamp)  
VALUES ('P003', 'SB007', 'M103', '10000000007', 305.900, 'ACC003', TO_TIMESTAMP('2024-07-01 14:00:00', 'YYYY-
MM-DD HH24:MI:SS')); 
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APPLYING QUERIES 

1) Get the total amount paid by customers of every country 

SELECT  
    C.Country, 
    SUM(P.Amount) AS Total_Amount_Paid 
FROM  
    Customer C 
JOIN  
    Subscription S ON C.Customer_Id = S.Customer_Id 
JOIN  
    Payment P ON S.Subscription_Id = P.Subscription_Id 
GROUP BY  
    C.Country 
ORDER BY  
    C.Country; 

 
 

2) List the plans and their total revenue, including the number of subscribers 
SELECT  
    P.Plan_Id, 
    P.Plan_Name, 
    COUNT(S.Subscription_Id) AS Number_of_Subscribers, 
    SUM(Payment.Amount) AS Total_Revenue 
FROM  
    Plan P 
JOIN  
    Subscription S ON P.Plan_Id = S.Plan_Id 
JOIN  
    Payment ON S.Subscription_Id = Payment.Subscription_Id 
GROUP BY  
    P.Plan_Id, P.Plan_Name 
ORDER BY  
    Total_Revenue DESC; 
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3) List top 5 customers who have received the maximum discount on a plan 
SELECT * FROM ( 
    SELECT  
        C.Customer_Id, 
        C.Name, 
        S.Plan_Id, 
        S.Percent_Discount 
    FROM  
        Customer C 
    JOIN  
        Subscription S ON C.Customer_Id = S.Customer_Id 
    ORDER BY  
        S.Percent_Discount DESC 
) 
WHERE ROWNUM <= 5; 
 

 
 

4) Get customers who have never made a payment but have active subscriptions 
SELECT  
    C.Customer_Id, 
    C.Name, 
    S.Subscription_Id, 
    S.Paid_Status 
FROM  
    Customer C 
JOIN  
    Subscription S ON C.Customer_Id = S.Customer_Id 
WHERE  
    S.Subscription_Id NOT IN (SELECT Subscription_Id FROM Payment) 
    AND S.Paid_Status = 'No'; 
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5) List all subscriptions with the calculated total amount after discount, and the difference between the 
actual and expected amounts 
SELECT  
    S.Subscription_Id, 
    S.Customer_Id, 
    S.Plan_Id, 
    (P.Price_per_month * S.Duration_Months) AS Actual_Amount, 
    S.Amount_ToBe_Paid, 
    (P.Price_per_month * S.Duration_Months) - S.Amount_ToBe_Paid AS Discount_Amount 
FROM  
    Subscription S 
JOIN  
    Plan P ON S.Plan_Id = P.Plan_Id; 
 

 
 

6) Find customers who have made payments to all plans they are subscribed to 
SELECT  
    C.Customer_Id, 
    C.Name 
FROM  
    Customer C 
JOIN  
    Subscription S ON C.Customer_Id = S.Customer_Id 
GROUP BY  
    C.Customer_Id, C.Name 
HAVING  
    COUNT(DISTINCT S.Plan_Id) =  
    (SELECT COUNT(DISTINCT S2.Plan_Id)  
     FROM Subscription S2  
     WHERE S2.Customer_Id = C.Customer_Id); 
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7) Get the total number of payments for each payment method, along with the total sum of payments 
SELECT  
    M.Method_Name, 
    COUNT(P.Payment_Id) AS Total_Payments, 
    SUM(P.Amount) AS Total_Amount 
FROM  
    Payment P 
JOIN  
    Method M ON P.Method_Id = M.Method_Id 
GROUP BY  
    M.Method_Name 
ORDER BY  
    Total_Amount DESC; 
 

 
 

8) Get the plan with the highest number of active subscriptions in 2023-01 
SELECT  
    S.Plan_Id, 
    P.Plan_Name, 
    COUNT(*) AS Active_Subscription_Count 
FROM  
    Subscription S 
JOIN  
    Plan P ON S.Plan_Id = P.Plan_Id 
WHERE  
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    TO_CHAR(S.Start_Date, 'YYYY-MM') = '2023-01'  
GROUP BY  
    S.Plan_Id, P.Plan_Name 
HAVING  
    COUNT(*) = ( 
        SELECT MAX(Active_Subscription_Count) 
        FROM ( 
            SELECT COUNT(*) AS Active_Subscription_Count 
            FROM Subscription S2 
            WHERE TO_CHAR(S2.Start_Date, 'YYYY-MM') = '2023-01' 
            GROUP BY S2.Plan_Id 
        ) 
    ) 
ORDER BY  
    Active_Subscription_Count DESC; 
 

 
 

9) Find the average subscription duration for each plan 
SELECT  
    P.Plan_Id, 
    P.Plan_Name, 
    AVG(S.Duration_Months) AS Average_Duration 
FROM  
    Subscription S 
JOIN  
    Plan P ON S.Plan_Id = P.Plan_Id 
GROUP BY  
    P.Plan_Id, P.Plan_Name; 
 

 
 

10) Identify customers who have not used credit card payment method but have subscriptions 
SELECT  
    C.Customer_Id, 
    C.Name 
FROM  
    Customer C 
WHERE  
    C.Customer_Id NOT IN ( 
        SELECT DISTINCT S.Customer_Id 
        FROM Subscription S 
        JOIN Payment P ON S.Subscription_Id = P.Subscription_Id 
        JOIN Method M ON P.Method_Id = M.Method_Id 
        WHERE M.Method_Name = 'Credit Card' 
    ); 
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11) Find the top 2 most expensive plans based on their total amount of payments made 
SELECT *  
FROM ( 
    SELECT  
        P.Plan_Id, 
        SUM(PM.Amount) AS Total_Payments 
    FROM  
        Payment PM 
    JOIN  
        Subscription S ON PM.Subscription_Id = S.Subscription_Id 
    JOIN  
        Plan P ON S.Plan_Id = P.Plan_Id 
    GROUP BY  
        P.Plan_Id 
    ORDER BY  
        Total_Payments DESC 
) 
WHERE ROWNUM <= 2; 
 

 
 

12) Calculate the total discount amount provided across all plans in the last 6 months 
SELECT  
    SUM((P.Price_per_month * S.Duration_Months) - S.Amount_ToBe_Paid) AS Total_Discount 
FROM  
    Payment PM 
JOIN  
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    Subscription S ON PM.Subscription_Id = S.Subscription_Id 
JOIN  
    Plan P ON S.Plan_Id = P.Plan_Id 
WHERE  
    PM.Payment_Timestamp >= ADD_MONTHS(SYSDATE, -6); 
 

 
 

13) Identify customers who have never received a discount on their subscription 
SELECT  
    C.Customer_Id 
FROM  
    Customer C 
WHERE  
    C.Customer_Id NOT IN ( 
        SELECT DISTINCT S.Customer_Id 
        FROM Subscription S 
        JOIN Payment PM ON S.Subscription_Id = PM.Subscription_Id 
        WHERE S.Percent_Discount > 0 
    ); 
 

 
 

14) Find the most frequent payment method used by customers in US 
SELECT  
    payment_method, 
    payment_count 
FROM ( 
    SELECT  
        p.Method_Id AS payment_method, 
        COUNT(*) AS payment_count 
    FROM  
        Payment p 
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    JOIN  
        Subscription s ON p.Subscription_Id = s.Subscription_Id 
    JOIN  
        Customer c ON s.Customer_Id = c.Customer_Id 
    WHERE  
        c.Country = 'US' 
    GROUP BY  
        p.Method_Id 
) 
WHERE  
    payment_count = ( 
        SELECT  
            MAX(COUNT(*)) 
        FROM  
            Payment p 
        JOIN  
            Subscription s ON p.Subscription_Id = s.Subscription_Id 
        JOIN  
            Customer c ON s.Customer_Id = c.Customer_Id 
        WHERE  
            c.Country = 'US' 
        GROUP BY  
            p.Method_Id 
    ); 
 

 
 
 
 
 

WEB APPLICATION IMPLEMENTATION 
 

The created web application is available at: 
https://iqramehmood.somee.com/LAB%2011/Home.aspx 

 

 
 

https://iqramehmood.somee.com/LAB%2011/Home.aspx

